![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatlss | Structured version Visualization version GIF version |
Description: The set of scalar matrices is a linear subspace of the matrix algebra. (Contributed by AV, 25-Dec-2019.) |
Ref | Expression |
---|---|
scmatlss.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatlss.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatlss | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatlss.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | 1 | matsca2 20448 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
3 | eqidd 2761 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅)) | |
4 | eqidd 2761 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘𝐴)) | |
5 | eqidd 2761 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘𝐴) = (+g‘𝐴)) | |
6 | eqidd 2761 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴)) | |
7 | eqidd 2761 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (LSubSp‘𝐴) = (LSubSp‘𝐴)) | |
8 | eqid 2760 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2760 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
10 | eqid 2760 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
11 | eqid 2760 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
12 | scmatlss.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
13 | 8, 1, 9, 10, 11, 12 | scmatval 20532 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))}) |
14 | ssrab2 3828 | . . 3 ⊢ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))} ⊆ (Base‘𝐴) | |
15 | 13, 14 | syl6eqss 3796 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐴)) |
16 | eqid 2760 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 1, 9, 8, 16, 12 | scmatid 20542 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) |
18 | ne0i 4064 | . . 3 ⊢ ((1r‘𝐴) ∈ 𝑆 → 𝑆 ≠ ∅) | |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
20 | 8, 1, 12, 11 | smatvscl 20552 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆)) → (𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆) |
21 | 20 | 3adantr3 1177 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆) |
22 | simpr3 1238 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
23 | 21, 22 | jca 555 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) |
24 | 1, 9, 8, 16, 12 | scmataddcl 20544 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥)(+g‘𝐴)𝑦) ∈ 𝑆) |
25 | 23, 24 | syldan 488 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥)(+g‘𝐴)𝑦) ∈ 𝑆) |
26 | 2, 3, 4, 5, 6, 7, 15, 19, 25 | islssd 19158 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 {crab 3054 ∅c0 4058 ‘cfv 6049 (class class class)co 6814 Fincfn 8123 Basecbs 16079 +gcplusg 16163 ·𝑠 cvsca 16167 0gc0g 16322 1rcur 18721 Ringcrg 18767 LSubSpclss 19154 Mat cmat 20435 ScMat cscmat 20517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-ot 4330 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-sup 8515 df-oi 8582 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-fzo 12680 df-seq 13016 df-hash 13332 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-hom 16188 df-cco 16189 df-0g 16324 df-gsum 16325 df-prds 16330 df-pws 16332 df-mre 16468 df-mrc 16469 df-acs 16471 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mulg 17762 df-subg 17812 df-ghm 17879 df-cntz 17970 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-subrg 19000 df-lmod 19087 df-lss 19155 df-sra 19394 df-rgmod 19395 df-dsmm 20298 df-frlm 20313 df-mamu 20412 df-mat 20436 df-scmat 20519 |
This theorem is referenced by: scmatghm 20561 |
Copyright terms: Public domain | W3C validator |