MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatghm Structured version   Visualization version   GIF version

Theorem scmatghm 20556
Description: There is a group homomorphism from the additive group of a ring to the additive group of the ring of scalar matrices over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
scmatrhmval.c 𝐶 = (𝑁 ScMat 𝑅)
scmatghm.s 𝑆 = (𝐴s 𝐶)
Assertion
Ref Expression
scmatghm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, 1   𝑥,   𝑥,𝐶   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem scmatghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatrhmval.k . 2 𝐾 = (Base‘𝑅)
2 eqid 2770 . 2 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2770 . 2 (+g𝑅) = (+g𝑅)
4 eqid 2770 . 2 (+g𝑆) = (+g𝑆)
5 ringgrp 18759 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
65adantl 467 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp)
7 scmatrhmval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
8 eqid 2770 . . . 4 (Base‘𝐴) = (Base‘𝐴)
9 eqid 2770 . . . 4 (0g𝑅) = (0g𝑅)
10 scmatrhmval.c . . . 4 𝐶 = (𝑁 ScMat 𝑅)
117, 8, 1, 9, 10scmatsgrp 20542 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (SubGrp‘𝐴))
12 scmatghm.s . . . 4 𝑆 = (𝐴s 𝐶)
1312subggrp 17804 . . 3 (𝐶 ∈ (SubGrp‘𝐴) → 𝑆 ∈ Grp)
1411, 13syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ Grp)
15 scmatrhmval.o . . . 4 1 = (1r𝐴)
16 scmatrhmval.t . . . 4 = ( ·𝑠𝐴)
17 scmatrhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
181, 7, 15, 16, 17, 10scmatf 20552 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
197, 10, 12scmatstrbas 20549 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶)
2019feq3d 6172 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ↔ 𝐹:𝐾𝐶))
2118, 20mpbird 247 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶(Base‘𝑆))
227matsca2 20442 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
23 ovex 6822 . . . . . . . . . . 11 (𝑁 ScMat 𝑅) ∈ V
2410, 23eqeltri 2845 . . . . . . . . . 10 𝐶 ∈ V
25 eqid 2770 . . . . . . . . . . 11 (Scalar‘𝐴) = (Scalar‘𝐴)
2612, 25resssca 16238 . . . . . . . . . 10 (𝐶 ∈ V → (Scalar‘𝐴) = (Scalar‘𝑆))
2724, 26mp1i 13 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝐴) = (Scalar‘𝑆))
2822, 27eqtrd 2804 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑆))
2928fveq2d 6336 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g𝑅) = (+g‘(Scalar‘𝑆)))
3029oveqd 6809 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦(+g𝑅)𝑧) = (𝑦(+g‘(Scalar‘𝑆))𝑧))
3130oveq1d 6807 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦(+g𝑅)𝑧) 1 ) = ((𝑦(+g‘(Scalar‘𝑆))𝑧) 1 ))
3231adantr 466 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦(+g𝑅)𝑧) 1 ) = ((𝑦(+g‘(Scalar‘𝑆))𝑧) 1 ))
337matlmod 20451 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
347, 10scmatlss 20548 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (LSubSp‘𝐴))
35 eqid 2770 . . . . . . . 8 (LSubSp‘𝐴) = (LSubSp‘𝐴)
3612, 35lsslmod 19172 . . . . . . 7 ((𝐴 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝐴)) → 𝑆 ∈ LMod)
3733, 34, 36syl2anc 565 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ LMod)
3837adantr 466 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑆 ∈ LMod)
3928fveq2d 6336 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝑆)))
401, 39syl5eq 2816 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 = (Base‘(Scalar‘𝑆)))
4140eleq2d 2835 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝐾𝑦 ∈ (Base‘(Scalar‘𝑆))))
4241biimpd 219 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝐾𝑦 ∈ (Base‘(Scalar‘𝑆))))
4342adantrd 475 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦𝐾𝑧𝐾) → 𝑦 ∈ (Base‘(Scalar‘𝑆))))
4443imp 393 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑦 ∈ (Base‘(Scalar‘𝑆)))
4540eleq2d 2835 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑧𝐾𝑧 ∈ (Base‘(Scalar‘𝑆))))
4645biimpd 219 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑧𝐾𝑧 ∈ (Base‘(Scalar‘𝑆))))
4746adantld 474 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦𝐾𝑧𝐾) → 𝑧 ∈ (Base‘(Scalar‘𝑆))))
4847imp 393 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑧 ∈ (Base‘(Scalar‘𝑆)))
497, 8, 1, 9, 10scmatid 20537 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐶)
5015a1i 11 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 = (1r𝐴))
5149, 50, 193eltr4d 2864 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝑆))
5251adantr 466 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 1 ∈ (Base‘𝑆))
53 eqid 2770 . . . . . 6 (Scalar‘𝑆) = (Scalar‘𝑆)
5412, 16ressvsca 16239 . . . . . . 7 (𝐶 ∈ V → = ( ·𝑠𝑆))
5524, 54ax-mp 5 . . . . . 6 = ( ·𝑠𝑆)
56 eqid 2770 . . . . . 6 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
57 eqid 2770 . . . . . 6 (+g‘(Scalar‘𝑆)) = (+g‘(Scalar‘𝑆))
582, 4, 53, 55, 56, 57lmodvsdir 19096 . . . . 5 ((𝑆 ∈ LMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑧 ∈ (Base‘(Scalar‘𝑆)) ∧ 1 ∈ (Base‘𝑆))) → ((𝑦(+g‘(Scalar‘𝑆))𝑧) 1 ) = ((𝑦 1 )(+g𝑆)(𝑧 1 )))
5938, 44, 48, 52, 58syl13anc 1477 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦(+g‘(Scalar‘𝑆))𝑧) 1 ) = ((𝑦 1 )(+g𝑆)(𝑧 1 )))
6032, 59eqtrd 2804 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦(+g𝑅)𝑧) 1 ) = ((𝑦 1 )(+g𝑆)(𝑧 1 )))
61 simpr 471 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
6261adantr 466 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑅 ∈ Ring)
6361anim1i 594 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑅 ∈ Ring ∧ (𝑦𝐾𝑧𝐾)))
64 3anass 1079 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾) ↔ (𝑅 ∈ Ring ∧ (𝑦𝐾𝑧𝐾)))
6563, 64sylibr 224 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾))
661, 3ringacl 18785 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾) → (𝑦(+g𝑅)𝑧) ∈ 𝐾)
6765, 66syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦(+g𝑅)𝑧) ∈ 𝐾)
681, 7, 15, 16, 17scmatrhmval 20550 . . . 4 ((𝑅 ∈ Ring ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐾) → (𝐹‘(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧) 1 ))
6962, 67, 68syl2anc 565 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹‘(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧) 1 ))
701, 7, 15, 16, 17scmatrhmval 20550 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐾) → (𝐹𝑦) = (𝑦 1 ))
7170ad2ant2lr 734 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑦) = (𝑦 1 ))
721, 7, 15, 16, 17scmatrhmval 20550 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑧𝐾) → (𝐹𝑧) = (𝑧 1 ))
7372ad2ant2l 732 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑧) = (𝑧 1 ))
7471, 73oveq12d 6810 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦)(+g𝑆)(𝐹𝑧)) = ((𝑦 1 )(+g𝑆)(𝑧 1 )))
7560, 69, 743eqtr4d 2814 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹‘(𝑦(+g𝑅)𝑧)) = ((𝐹𝑦)(+g𝑆)(𝐹𝑧)))
761, 2, 3, 4, 6, 14, 21, 75isghmd 17876 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  Vcvv 3349  cmpt 4861  wf 6027  cfv 6031  (class class class)co 6792  Fincfn 8108  Basecbs 16063  s cress 16064  +gcplusg 16148  Scalarcsca 16151   ·𝑠 cvsca 16152  0gc0g 16307  Grpcgrp 17629  SubGrpcsubg 17795   GrpHom cghm 17864  1rcur 18708  Ringcrg 18754  LModclmod 19072  LSubSpclss 19141   Mat cmat 20429   ScMat cscmat 20512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-ot 4323  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-fzo 12673  df-seq 13008  df-hash 13321  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-hom 16173  df-cco 16174  df-0g 16309  df-gsum 16310  df-prds 16315  df-pws 16317  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-ghm 17865  df-cntz 17956  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-subrg 18987  df-lmod 19074  df-lss 19142  df-sra 19386  df-rgmod 19387  df-dsmm 20292  df-frlm 20307  df-mamu 20406  df-mat 20430  df-dmat 20513  df-scmat 20514
This theorem is referenced by:  scmatrhm  20558
  Copyright terms: Public domain W3C validator