MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sca2rab Structured version   Visualization version   GIF version

Theorem sca2rab 23500
Description: If 𝐵 is a scale of 𝐴 by 𝐶, then 𝐴 is a scale of 𝐵 by 1 / 𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
Assertion
Ref Expression
sca2rab (𝜑𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem sca2rab
StepHypRef Expression
1 ovolsca.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21sseld 3751 . . . . 5 (𝜑 → (𝑦𝐴𝑦 ∈ ℝ))
32pm4.71rd 552 . . . 4 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
4 ovolsca.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
54adantr 466 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
65eleq2d 2836 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵 ↔ ((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}))
7 ovolsca.2 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
87adantr 466 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℝ+)
98rprecred 12086 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (1 / 𝐶) ∈ ℝ)
10 remulcl 10223 . . . . . . . 8 (((1 / 𝐶) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ)
119, 10sylancom 576 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ)
12 oveq2 6801 . . . . . . . . 9 (𝑥 = ((1 / 𝐶) · 𝑦) → (𝐶 · 𝑥) = (𝐶 · ((1 / 𝐶) · 𝑦)))
1312eleq1d 2835 . . . . . . . 8 (𝑥 = ((1 / 𝐶) · 𝑦) → ((𝐶 · 𝑥) ∈ 𝐴 ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
1413elrab3 3516 . . . . . . 7 (((1 / 𝐶) · 𝑦) ∈ ℝ → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
1511, 14syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
16 simpr 471 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1716recnd 10270 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
188rpcnd 12077 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℂ)
198rpne0d 12080 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐶 ≠ 0)
2017, 18, 19divrec2d 11007 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 𝐶) = ((1 / 𝐶) · 𝑦))
2120oveq2d 6809 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = (𝐶 · ((1 / 𝐶) · 𝑦)))
2217, 18, 19divcan2d 11005 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
2321, 22eqtr3d 2807 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐶 · ((1 / 𝐶) · 𝑦)) = 𝑦)
2423eleq1d 2835 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴𝑦𝐴))
256, 15, 243bitrd 294 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵𝑦𝐴))
2625pm5.32da 568 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
273, 26bitr4d 271 . . 3 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)))
2827abbi2dv 2891 . 2 (𝜑𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)})
29 df-rab 3070 . 2 {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)}
3028, 29syl6eqr 2823 1 (𝜑𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  {cab 2757  {crab 3065  wss 3723  (class class class)co 6793  cr 10137  1c1 10139   · cmul 10143   / cdiv 10886  +crp 12035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-rp 12036
This theorem is referenced by:  ovolsca  23503
  Copyright terms: Public domain W3C validator