![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbthcl | Structured version Visualization version GIF version |
Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthcl | ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8077 | . 2 ⊢ Rel ≈ | |
2 | inss1 3941 | . . 3 ⊢ ( ≼ ∩ ◡ ≼ ) ⊆ ≼ | |
3 | reldom 8078 | . . 3 ⊢ Rel ≼ | |
4 | relss 5315 | . . 3 ⊢ (( ≼ ∩ ◡ ≼ ) ⊆ ≼ → (Rel ≼ → Rel ( ≼ ∩ ◡ ≼ ))) | |
5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≼ ∩ ◡ ≼ ) |
6 | brin 4812 | . . 3 ⊢ (𝑥( ≼ ∩ ◡ ≼ )𝑦 ↔ (𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦)) | |
7 | vex 3307 | . . . . 5 ⊢ 𝑥 ∈ V | |
8 | vex 3307 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brcnv 5412 | . . . 4 ⊢ (𝑥◡ ≼ 𝑦 ↔ 𝑦 ≼ 𝑥) |
10 | 9 | anbi2i 732 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦) ↔ (𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥)) |
11 | sbthb 8197 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) ↔ 𝑥 ≈ 𝑦) | |
12 | 6, 10, 11 | 3bitrri 287 | . 2 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑥( ≼ ∩ ◡ ≼ )𝑦) |
13 | 1, 5, 12 | eqbrriv 5324 | 1 ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1596 ∩ cin 3679 ⊆ wss 3680 class class class wbr 4760 ◡ccnv 5217 Rel wrel 5223 ≈ cen 8069 ≼ cdom 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-er 7862 df-en 8073 df-dom 8074 |
This theorem is referenced by: dfsdom2 8199 |
Copyright terms: Public domain | W3C validator |