![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbth | Structured version Visualization version GIF version |
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 8111 through sbthlem10 8120; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 8120. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.) |
Ref | Expression |
---|---|
sbth | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8003 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelexi 5192 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
3 | 1 | brrelexi 5192 | . . 3 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
4 | breq1 4688 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑧 ≼ 𝑤 ↔ 𝐴 ≼ 𝑤)) | |
5 | breq2 4689 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑤 ≼ 𝑧 ↔ 𝑤 ≼ 𝐴)) | |
6 | 4, 5 | anbi12d 747 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) ↔ (𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴))) |
7 | breq1 4688 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤)) | |
8 | 6, 7 | imbi12d 333 | . . . 4 ⊢ (𝑧 = 𝐴 → (((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) ↔ ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤))) |
9 | breq2 4689 | . . . . . 6 ⊢ (𝑤 = 𝐵 → (𝐴 ≼ 𝑤 ↔ 𝐴 ≼ 𝐵)) | |
10 | breq1 4688 | . . . . . 6 ⊢ (𝑤 = 𝐵 → (𝑤 ≼ 𝐴 ↔ 𝐵 ≼ 𝐴)) | |
11 | 9, 10 | anbi12d 747 | . . . . 5 ⊢ (𝑤 = 𝐵 → ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) ↔ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
12 | breq2 4689 | . . . . 5 ⊢ (𝑤 = 𝐵 → (𝐴 ≈ 𝑤 ↔ 𝐴 ≈ 𝐵)) | |
13 | 11, 12 | imbi12d 333 | . . . 4 ⊢ (𝑤 = 𝐵 → (((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤) ↔ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵))) |
14 | vex 3234 | . . . . 5 ⊢ 𝑧 ∈ V | |
15 | sseq1 3659 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝑧 ↔ 𝑥 ⊆ 𝑧)) | |
16 | imaeq2 5497 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑓 “ 𝑦) = (𝑓 “ 𝑥)) | |
17 | 16 | difeq2d 3761 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑤 ∖ (𝑓 “ 𝑦)) = (𝑤 ∖ (𝑓 “ 𝑥))) |
18 | 17 | imaeq2d 5501 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥)))) |
19 | difeq2 3755 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑧 ∖ 𝑦) = (𝑧 ∖ 𝑥)) | |
20 | 18, 19 | sseq12d 3667 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))) |
21 | 15, 20 | anbi12d 747 | . . . . . 6 ⊢ (𝑦 = 𝑥 → ((𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦)) ↔ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥)))) |
22 | 21 | cbvabv 2776 | . . . . 5 ⊢ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))} = {𝑥 ∣ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))} |
23 | eqid 2651 | . . . . 5 ⊢ ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) = ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) | |
24 | vex 3234 | . . . . 5 ⊢ 𝑤 ∈ V | |
25 | 14, 22, 23, 24 | sbthlem10 8120 | . . . 4 ⊢ ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) |
26 | 8, 13, 25 | vtocl2g 3301 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
27 | 2, 3, 26 | syl2an 493 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
28 | 27 | pm2.43i 52 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 Vcvv 3231 ∖ cdif 3604 ∪ cun 3605 ⊆ wss 3607 ∪ cuni 4468 class class class wbr 4685 ◡ccnv 5142 ↾ cres 5145 “ cima 5146 ≈ cen 7994 ≼ cdom 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-en 7998 df-dom 7999 |
This theorem is referenced by: sbthb 8122 sdomnsym 8126 domtriord 8147 xpen 8164 limenpsi 8176 php 8185 onomeneq 8191 unbnn 8257 infxpenlem 8874 fseqen 8888 infpwfien 8923 inffien 8924 alephdom 8942 mappwen 8973 infcdaabs 9066 infunabs 9067 infcda 9068 infdif 9069 infxpabs 9072 infmap2 9078 gchaleph 9531 gchhar 9539 inttsk 9634 inar1 9635 znnen 14985 qnnen 14986 rpnnen 15000 rexpen 15001 mreexfidimd 16358 acsinfdimd 17229 fislw 18086 opnreen 22681 ovolctb2 23306 vitali 23427 aannenlem3 24130 basellem4 24855 lgsqrlem4 25119 upgrex 26032 phpreu 33523 poimirlem26 33565 pellexlem4 37713 pellexlem5 37714 idomsubgmo 38093 |
Copyright terms: Public domain | W3C validator |