![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbt | Structured version Visualization version GIF version |
Description: A substitution into a theorem yields a theorem. (See chvar 2298 and chvarv 2299 for versions using implicit substitution.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Jul-2018.) |
Ref | Expression |
---|---|
sbt.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
sbt | ⊢ [𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2381 | . 2 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
2 | sbt.1 | . 2 ⊢ 𝜑 | |
3 | 1, 2 | mpg 1764 | 1 ⊢ [𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: [wsb 1937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-sb 1938 |
This theorem is referenced by: vjust 3232 iscatd2 16389 iuninc 29505 suppss2f 29567 esumpfinvalf 30266 sbtT 39100 2sb5ndVD 39460 2sb5ndALT 39482 |
Copyright terms: Public domain | W3C validator |