Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbt Structured version   Visualization version   GIF version

Theorem sbt 2447
 Description: A substitution into a theorem yields a theorem. (See chvar 2298 and chvarv 2299 for versions using implicit substitution.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Jul-2018.)
Hypothesis
Ref Expression
sbt.1 𝜑
Assertion
Ref Expression
sbt [𝑦 / 𝑥]𝜑

Proof of Theorem sbt
StepHypRef Expression
1 stdpc4 2381 . 2 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
2 sbt.1 . 2 𝜑
31, 2mpg 1764 1 [𝑦 / 𝑥]𝜑
 Colors of variables: wff setvar class Syntax hints:  [wsb 1937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-sb 1938 This theorem is referenced by:  vjust  3232  iscatd2  16389  iuninc  29505  suppss2f  29567  esumpfinvalf  30266  sbtT  39100  2sb5ndVD  39460  2sb5ndALT  39482
 Copyright terms: Public domain W3C validator