Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbss Structured version   Visualization version   GIF version

Theorem sbss 4223
 Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sbss ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem sbss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3354 . 2 𝑦 ∈ V
2 sbequ 2523 . 2 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝑥𝐴 ↔ [𝑦 / 𝑥]𝑥𝐴))
3 sseq1 3775 . 2 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
4 nfv 1995 . . 3 𝑥 𝑧𝐴
5 sseq1 3775 . . 3 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
64, 5sbie 2555 . 2 ([𝑧 / 𝑥]𝑥𝐴𝑧𝐴)
71, 2, 3, 6vtoclb 3414 1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196  [wsb 2049   ⊆ wss 3723 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-v 3353  df-in 3730  df-ss 3737 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator