![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbrim | Structured version Visualization version GIF version |
Description: Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbrim.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbrim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbim 2542 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sbrim.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | sbf 2527 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
4 | 3 | imbi1i 338 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
5 | 1, 4 | bitri 264 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 Ⅎwnf 1856 [wsb 2049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-10 2174 ax-12 2203 ax-13 2408 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-ex 1853 df-nf 1858 df-sb 2050 |
This theorem is referenced by: sbied 2556 sbco2d 2563 |
Copyright terms: Public domain | W3C validator |