MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbralie Structured version   Visualization version   GIF version

Theorem sbralie 3179
Description: Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
Hypothesis
Ref Expression
sbralie.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbralie ([𝑥 / 𝑦]∀𝑥𝑦 𝜑 ↔ ∀𝑦𝑥 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem sbralie
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvralsv 3177 . . . 4 (∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
21sbbii 1885 . . 3 ([𝑥 / 𝑦]∀𝑥𝑦 𝜑 ↔ [𝑥 / 𝑦]∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
3 nfv 1841 . . . 4 𝑦𝑧𝑥 [𝑧 / 𝑥]𝜑
4 raleq 3133 . . . 4 (𝑦 = 𝑥 → (∀𝑧𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧𝑥 [𝑧 / 𝑥]𝜑))
53, 4sbie 2406 . . 3 ([𝑥 / 𝑦]∀𝑧𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧𝑥 [𝑧 / 𝑥]𝜑)
62, 5bitri 264 . 2 ([𝑥 / 𝑦]∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑥 [𝑧 / 𝑥]𝜑)
7 cbvralsv 3177 . . 3 (∀𝑧𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝑥 [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
8 nfv 1841 . . . . . 6 𝑧𝜑
98sbco2 2413 . . . . 5 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
10 nfv 1841 . . . . . 6 𝑥𝜓
11 sbralie.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1210, 11sbie 2406 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
139, 12bitri 264 . . . 4 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑𝜓)
1413ralbii 2977 . . 3 (∀𝑦𝑥 [𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝑥 𝜓)
157, 14bitri 264 . 2 (∀𝑧𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝑥 𝜓)
166, 15bitri 264 1 ([𝑥 / 𝑦]∀𝑥𝑦 𝜑 ↔ ∀𝑦𝑥 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  [wsb 1878  wral 2909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914
This theorem is referenced by:  tfinds2  7048
  Copyright terms: Public domain W3C validator