Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbor Structured version   Visualization version   GIF version

Theorem sbor 2523
 Description: Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.)
Assertion
Ref Expression
sbor ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))

Proof of Theorem sbor
StepHypRef Expression
1 sbim 2520 . . 3 ([𝑦 / 𝑥](¬ 𝜑𝜓) ↔ ([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥]𝜓))
2 sbn 2516 . . . 4 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
32imbi1i 338 . . 3 (([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥]𝜓) ↔ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
41, 3bitri 264 . 2 ([𝑦 / 𝑥](¬ 𝜑𝜓) ↔ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
5 df-or 384 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
65sbbii 2041 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥](¬ 𝜑𝜓))
7 df-or 384 . 2 (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
84, 6, 73bitr4i 292 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382  [wsb 2034 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-10 2156  ax-12 2184  ax-13 2379 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1842  df-nf 1847  df-sb 2035 This theorem is referenced by:  sbcor  3608  unab  4025  sbcorgOLD  39211
 Copyright terms: Public domain W3C validator