MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbn Structured version   Visualization version   GIF version

Theorem sbn 2419
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.)
Assertion
Ref Expression
sbn ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbn
StepHypRef Expression
1 df-sb 1938 . . 3 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑)))
2 exanali 1826 . . . 4 (∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝑥 = 𝑦𝜑))
32anbi2i 730 . . 3 (((𝑥 = 𝑦 → ¬ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑)) ↔ ((𝑥 = 𝑦 → ¬ 𝜑) ∧ ¬ ∀𝑥(𝑥 = 𝑦𝜑)))
4 annim 440 . . 3 (((𝑥 = 𝑦 → ¬ 𝜑) ∧ ¬ ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ¬ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
51, 3, 43bitri 286 . 2 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
6 dfsb3 2402 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
75, 6xchbinxr 324 1 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wal 1521  wex 1744  [wsb 1937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087  ax-13 2282
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1745  df-nf 1750  df-sb 1938
This theorem is referenced by:  sbi2  2421  sbor  2426  sban  2427  sbex  2491  sbcng  3509  difab  3929  bj-ab0  33027  wl-sb8et  33464  pm13.196a  38932
  Copyright terms: Public domain W3C validator