Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sblim Structured version   Visualization version   GIF version

Theorem sblim 2396
 Description: Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sblim.1 𝑥𝜓
Assertion
Ref Expression
sblim ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))

Proof of Theorem sblim
StepHypRef Expression
1 sbim 2394 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 sblim.1 . . . 4 𝑥𝜓
32sbf 2379 . . 3 ([𝑦 / 𝑥]𝜓𝜓)
43imbi2i 326 . 2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
51, 4bitri 264 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  Ⅎwnf 1705  [wsb 1877 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707  df-sb 1878 This theorem is referenced by:  sbmo  2514
 Copyright terms: Public domain W3C validator