MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbied Structured version   Visualization version   GIF version

Theorem sbied 2292
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 2291). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Jun-2018.)
Hypotheses
Ref Expression
sbied.1 𝑥𝜑
sbied.2 (𝜑 → Ⅎ𝑥𝜒)
sbied.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
sbied (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))

Proof of Theorem sbied
StepHypRef Expression
1 sbied.1 . . . 4 𝑥𝜑
21sbrim 2279 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
3 sbied.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
41, 3nfim1 2055 . . . 4 𝑥(𝜑𝜒)
5 sbied.3 . . . . . 6 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
65com12 32 . . . . 5 (𝑥 = 𝑦 → (𝜑 → (𝜓𝜒)))
76pm5.74d 257 . . . 4 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
84, 7sbie 2291 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑𝜒))
92, 8bitr3i 261 . 2 ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑𝜒))
109pm5.74ri 256 1 (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 191  wnf 1696  [wsb 1828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-10 1965  ax-12 1983  ax-13 2137
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-ex 1693  df-nf 1697  df-sb 1829
This theorem is referenced by:  sbiedv  2293  sbco2  2298  wl-equsb3  32115
  Copyright terms: Public domain W3C validator