Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbo Structured version   Visualization version   GIF version

Theorem sbgoldbo 42203
Description: If the strong binary Goldbach conjecture is valid, the original formulation of the Goldbach conjecture also holds: Every integer greater than 2 can be expressed as the sum of three "primes" with regarding 1 to be a prime (as Goldbach did). Original text: "Es scheint wenigstens, dass eine jede Zahl, die groesser ist als 2, ein aggregatum trium numerorum primorum sey." (Goldbach, 1742). (Contributed by AV, 25-Dec-2021.)
Hypothesis
Ref Expression
sbgoldbo.p 𝑃 = ({1} ∪ ℙ)
Assertion
Ref Expression
sbgoldbo (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘3)∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Distinct variable groups:   𝑃,𝑝,𝑞,𝑟   𝑛,𝑝,𝑞,𝑟
Allowed substitution hint:   𝑃(𝑛)

Proof of Theorem sbgoldbo
StepHypRef Expression
1 nfra1 3079 . 2 𝑛𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven )
2 3z 11622 . . . . 5 3 ∈ ℤ
3 6nn 11401 . . . . . 6 6 ∈ ℕ
43nnzi 11613 . . . . 5 6 ∈ ℤ
5 3re 11306 . . . . . 6 3 ∈ ℝ
6 6re 11313 . . . . . 6 6 ∈ ℝ
7 3lt6 11418 . . . . . 6 3 < 6
85, 6, 7ltleii 10372 . . . . 5 3 ≤ 6
9 eluz2 11905 . . . . 5 (6 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 6 ∈ ℤ ∧ 3 ≤ 6))
102, 4, 8, 9mpbir3an 1427 . . . 4 6 ∈ (ℤ‘3)
11 uzsplit 12625 . . . . 5 (6 ∈ (ℤ‘3) → (ℤ‘3) = ((3...(6 − 1)) ∪ (ℤ‘6)))
1211eleq2d 2825 . . . 4 (6 ∈ (ℤ‘3) → (𝑛 ∈ (ℤ‘3) ↔ 𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6))))
1310, 12ax-mp 5 . . 3 (𝑛 ∈ (ℤ‘3) ↔ 𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)))
14 elun 3896 . . . . 5 (𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)) ↔ (𝑛 ∈ (3...(6 − 1)) ∨ 𝑛 ∈ (ℤ‘6)))
15 6m1e5 11352 . . . . . . . . . 10 (6 − 1) = 5
1615oveq2i 6825 . . . . . . . . 9 (3...(6 − 1)) = (3...5)
17 5nn 11400 . . . . . . . . . . . 12 5 ∈ ℕ
1817nnzi 11613 . . . . . . . . . . 11 5 ∈ ℤ
19 5re 11311 . . . . . . . . . . . 12 5 ∈ ℝ
20 3lt5 11413 . . . . . . . . . . . 12 3 < 5
215, 19, 20ltleii 10372 . . . . . . . . . . 11 3 ≤ 5
22 eluz2 11905 . . . . . . . . . . 11 (5 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 5 ∈ ℤ ∧ 3 ≤ 5))
232, 18, 21, 22mpbir3an 1427 . . . . . . . . . 10 5 ∈ (ℤ‘3)
24 fzopredsuc 41861 . . . . . . . . . 10 (5 ∈ (ℤ‘3) → (3...5) = (({3} ∪ ((3 + 1)..^5)) ∪ {5}))
2523, 24ax-mp 5 . . . . . . . . 9 (3...5) = (({3} ∪ ((3 + 1)..^5)) ∪ {5})
2616, 25eqtri 2782 . . . . . . . 8 (3...(6 − 1)) = (({3} ∪ ((3 + 1)..^5)) ∪ {5})
2726eleq2i 2831 . . . . . . 7 (𝑛 ∈ (3...(6 − 1)) ↔ 𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}))
28 elun 3896 . . . . . . . . 9 (𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}) ↔ (𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) ∨ 𝑛 ∈ {5}))
29 elun 3896 . . . . . . . . . . 11 (𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) ↔ (𝑛 ∈ {3} ∨ 𝑛 ∈ ((3 + 1)..^5)))
30 elsni 4338 . . . . . . . . . . . . 13 (𝑛 ∈ {3} → 𝑛 = 3)
31 1ex 10247 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
3231snid 4353 . . . . . . . . . . . . . . . . . 18 1 ∈ {1}
3332orci 404 . . . . . . . . . . . . . . . . 17 (1 ∈ {1} ∨ 1 ∈ ℙ)
34 elun 3896 . . . . . . . . . . . . . . . . 17 (1 ∈ ({1} ∪ ℙ) ↔ (1 ∈ {1} ∨ 1 ∈ ℙ))
3533, 34mpbir 221 . . . . . . . . . . . . . . . 16 1 ∈ ({1} ∪ ℙ)
36 sbgoldbo.p . . . . . . . . . . . . . . . 16 𝑃 = ({1} ∪ ℙ)
3735, 36eleqtrri 2838 . . . . . . . . . . . . . . 15 1 ∈ 𝑃
3837a1i 11 . . . . . . . . . . . . . 14 (𝑛 = 3 → 1 ∈ 𝑃)
39 simpl 474 . . . . . . . . . . . . . . . 16 ((𝑛 = 3 ∧ 𝑝 = 1) → 𝑛 = 3)
40 oveq1 6821 . . . . . . . . . . . . . . . . . 18 (𝑝 = 1 → (𝑝 + 𝑞) = (1 + 𝑞))
4140oveq1d 6829 . . . . . . . . . . . . . . . . 17 (𝑝 = 1 → ((𝑝 + 𝑞) + 𝑟) = ((1 + 𝑞) + 𝑟))
4241adantl 473 . . . . . . . . . . . . . . . 16 ((𝑛 = 3 ∧ 𝑝 = 1) → ((𝑝 + 𝑞) + 𝑟) = ((1 + 𝑞) + 𝑟))
4339, 42eqeq12d 2775 . . . . . . . . . . . . . . 15 ((𝑛 = 3 ∧ 𝑝 = 1) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 3 = ((1 + 𝑞) + 𝑟)))
44432rexbidv 3195 . . . . . . . . . . . . . 14 ((𝑛 = 3 ∧ 𝑝 = 1) → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟)))
45 oveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 1 → (1 + 𝑞) = (1 + 1))
4645oveq1d 6829 . . . . . . . . . . . . . . . . . 18 (𝑞 = 1 → ((1 + 𝑞) + 𝑟) = ((1 + 1) + 𝑟))
4746eqeq2d 2770 . . . . . . . . . . . . . . . . 17 (𝑞 = 1 → (3 = ((1 + 𝑞) + 𝑟) ↔ 3 = ((1 + 1) + 𝑟)))
4847rexbidv 3190 . . . . . . . . . . . . . . . 16 (𝑞 = 1 → (∃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 3 = ((1 + 1) + 𝑟)))
4948adantl 473 . . . . . . . . . . . . . . 15 ((𝑛 = 3 ∧ 𝑞 = 1) → (∃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 3 = ((1 + 1) + 𝑟)))
50 oveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑟 = 1 → ((1 + 1) + 𝑟) = ((1 + 1) + 1))
51 df-3 11292 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
52 df-2 11291 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
5352oveq1i 6824 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = ((1 + 1) + 1)
5451, 53eqtri 2782 . . . . . . . . . . . . . . . . . 18 3 = ((1 + 1) + 1)
5550, 54syl6reqr 2813 . . . . . . . . . . . . . . . . 17 (𝑟 = 1 → 3 = ((1 + 1) + 𝑟))
5655adantl 473 . . . . . . . . . . . . . . . 16 ((𝑛 = 3 ∧ 𝑟 = 1) → 3 = ((1 + 1) + 𝑟))
5738, 56rspcedeq2vd 3458 . . . . . . . . . . . . . . 15 (𝑛 = 3 → ∃𝑟𝑃 3 = ((1 + 1) + 𝑟))
5838, 49, 57rspcedvd 3456 . . . . . . . . . . . . . 14 (𝑛 = 3 → ∃𝑞𝑃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟))
5938, 44, 58rspcedvd 3456 . . . . . . . . . . . . 13 (𝑛 = 3 → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
6030, 59syl 17 . . . . . . . . . . . 12 (𝑛 ∈ {3} → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
61 3p1e4 11365 . . . . . . . . . . . . . . . . 17 (3 + 1) = 4
62 df-5 11294 . . . . . . . . . . . . . . . . 17 5 = (4 + 1)
6361, 62oveq12i 6826 . . . . . . . . . . . . . . . 16 ((3 + 1)..^5) = (4..^(4 + 1))
64 4z 11623 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
65 fzval3 12751 . . . . . . . . . . . . . . . . 17 (4 ∈ ℤ → (4...4) = (4..^(4 + 1)))
6664, 65ax-mp 5 . . . . . . . . . . . . . . . 16 (4...4) = (4..^(4 + 1))
6763, 66eqtr4i 2785 . . . . . . . . . . . . . . 15 ((3 + 1)..^5) = (4...4)
6867eleq2i 2831 . . . . . . . . . . . . . 14 (𝑛 ∈ ((3 + 1)..^5) ↔ 𝑛 ∈ (4...4))
69 fzsn 12596 . . . . . . . . . . . . . . . 16 (4 ∈ ℤ → (4...4) = {4})
7064, 69ax-mp 5 . . . . . . . . . . . . . . 15 (4...4) = {4}
7170eleq2i 2831 . . . . . . . . . . . . . 14 (𝑛 ∈ (4...4) ↔ 𝑛 ∈ {4})
7268, 71bitri 264 . . . . . . . . . . . . 13 (𝑛 ∈ ((3 + 1)..^5) ↔ 𝑛 ∈ {4})
73 elsni 4338 . . . . . . . . . . . . . 14 (𝑛 ∈ {4} → 𝑛 = 4)
74 2prm 15627 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℙ
7574olci 405 . . . . . . . . . . . . . . . . . 18 (2 ∈ {1} ∨ 2 ∈ ℙ)
76 elun 3896 . . . . . . . . . . . . . . . . . 18 (2 ∈ ({1} ∪ ℙ) ↔ (2 ∈ {1} ∨ 2 ∈ ℙ))
7775, 76mpbir 221 . . . . . . . . . . . . . . . . 17 2 ∈ ({1} ∪ ℙ)
7877, 36eleqtrri 2838 . . . . . . . . . . . . . . . 16 2 ∈ 𝑃
7978a1i 11 . . . . . . . . . . . . . . 15 (𝑛 = 4 → 2 ∈ 𝑃)
80 oveq1 6821 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 2 → (𝑝 + 𝑞) = (2 + 𝑞))
8180oveq1d 6829 . . . . . . . . . . . . . . . . . 18 (𝑝 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((2 + 𝑞) + 𝑟))
8281eqeq2d 2770 . . . . . . . . . . . . . . . . 17 (𝑝 = 2 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((2 + 𝑞) + 𝑟)))
83822rexbidv 3195 . . . . . . . . . . . . . . . 16 (𝑝 = 2 → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟)))
8483adantl 473 . . . . . . . . . . . . . . 15 ((𝑛 = 4 ∧ 𝑝 = 2) → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟)))
8537a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 = 4 → 1 ∈ 𝑃)
86 oveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 1 → (2 + 𝑞) = (2 + 1))
8786oveq1d 6829 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 1 → ((2 + 𝑞) + 𝑟) = ((2 + 1) + 𝑟))
8887eqeq2d 2770 . . . . . . . . . . . . . . . . . 18 (𝑞 = 1 → (𝑛 = ((2 + 𝑞) + 𝑟) ↔ 𝑛 = ((2 + 1) + 𝑟)))
8988rexbidv 3190 . . . . . . . . . . . . . . . . 17 (𝑞 = 1 → (∃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((2 + 1) + 𝑟)))
9089adantl 473 . . . . . . . . . . . . . . . 16 ((𝑛 = 4 ∧ 𝑞 = 1) → (∃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((2 + 1) + 𝑟)))
91 simpl 474 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 4 ∧ 𝑟 = 1) → 𝑛 = 4)
92 df-4 11293 . . . . . . . . . . . . . . . . . . . . 21 4 = (3 + 1)
9351oveq1i 6824 . . . . . . . . . . . . . . . . . . . . 21 (3 + 1) = ((2 + 1) + 1)
9492, 93eqtri 2782 . . . . . . . . . . . . . . . . . . . 20 4 = ((2 + 1) + 1)
9594a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 4 ∧ 𝑟 = 1) → 4 = ((2 + 1) + 1))
96 oveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 1 → ((2 + 1) + 𝑟) = ((2 + 1) + 1))
9796eqcomd 2766 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 1 → ((2 + 1) + 1) = ((2 + 1) + 𝑟))
9897adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 4 ∧ 𝑟 = 1) → ((2 + 1) + 1) = ((2 + 1) + 𝑟))
9995, 98eqtrd 2794 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 4 ∧ 𝑟 = 1) → 4 = ((2 + 1) + 𝑟))
10091, 99eqtrd 2794 . . . . . . . . . . . . . . . . 17 ((𝑛 = 4 ∧ 𝑟 = 1) → 𝑛 = ((2 + 1) + 𝑟))
10185, 100rspcedeq2vd 3458 . . . . . . . . . . . . . . . 16 (𝑛 = 4 → ∃𝑟𝑃 𝑛 = ((2 + 1) + 𝑟))
10285, 90, 101rspcedvd 3456 . . . . . . . . . . . . . . 15 (𝑛 = 4 → ∃𝑞𝑃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟))
10379, 84, 102rspcedvd 3456 . . . . . . . . . . . . . 14 (𝑛 = 4 → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10473, 103syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ {4} → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10572, 104sylbi 207 . . . . . . . . . . . 12 (𝑛 ∈ ((3 + 1)..^5) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10660, 105jaoi 393 . . . . . . . . . . 11 ((𝑛 ∈ {3} ∨ 𝑛 ∈ ((3 + 1)..^5)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10729, 106sylbi 207 . . . . . . . . . 10 (𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
108 elsni 4338 . . . . . . . . . . 11 (𝑛 ∈ {5} → 𝑛 = 5)
109 3prm 15628 . . . . . . . . . . . . . . . 16 3 ∈ ℙ
110109olci 405 . . . . . . . . . . . . . . 15 (3 ∈ {1} ∨ 3 ∈ ℙ)
111 elun 3896 . . . . . . . . . . . . . . 15 (3 ∈ ({1} ∪ ℙ) ↔ (3 ∈ {1} ∨ 3 ∈ ℙ))
112110, 111mpbir 221 . . . . . . . . . . . . . 14 3 ∈ ({1} ∪ ℙ)
113112, 36eleqtrri 2838 . . . . . . . . . . . . 13 3 ∈ 𝑃
114113a1i 11 . . . . . . . . . . . 12 (𝑛 = 5 → 3 ∈ 𝑃)
115 oveq1 6821 . . . . . . . . . . . . . . . 16 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
116115oveq1d 6829 . . . . . . . . . . . . . . 15 (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟))
117116eqeq2d 2770 . . . . . . . . . . . . . 14 (𝑝 = 3 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((3 + 𝑞) + 𝑟)))
1181172rexbidv 3195 . . . . . . . . . . . . 13 (𝑝 = 3 → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟)))
119118adantl 473 . . . . . . . . . . . 12 ((𝑛 = 5 ∧ 𝑝 = 3) → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟)))
12037a1i 11 . . . . . . . . . . . . 13 (𝑛 = 5 → 1 ∈ 𝑃)
121 oveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑞 = 1 → (3 + 𝑞) = (3 + 1))
122121oveq1d 6829 . . . . . . . . . . . . . . . 16 (𝑞 = 1 → ((3 + 𝑞) + 𝑟) = ((3 + 1) + 𝑟))
123122eqeq2d 2770 . . . . . . . . . . . . . . 15 (𝑞 = 1 → (𝑛 = ((3 + 𝑞) + 𝑟) ↔ 𝑛 = ((3 + 1) + 𝑟)))
124123rexbidv 3190 . . . . . . . . . . . . . 14 (𝑞 = 1 → (∃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((3 + 1) + 𝑟)))
125124adantl 473 . . . . . . . . . . . . 13 ((𝑛 = 5 ∧ 𝑞 = 1) → (∃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((3 + 1) + 𝑟)))
126 simpl 474 . . . . . . . . . . . . . . 15 ((𝑛 = 5 ∧ 𝑟 = 1) → 𝑛 = 5)
127 oveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑟 = 1 → ((3 + 1) + 𝑟) = ((3 + 1) + 1))
12892oveq1i 6824 . . . . . . . . . . . . . . . . . 18 (4 + 1) = ((3 + 1) + 1)
12962, 128eqtri 2782 . . . . . . . . . . . . . . . . 17 5 = ((3 + 1) + 1)
130127, 129syl6reqr 2813 . . . . . . . . . . . . . . . 16 (𝑟 = 1 → 5 = ((3 + 1) + 𝑟))
131130adantl 473 . . . . . . . . . . . . . . 15 ((𝑛 = 5 ∧ 𝑟 = 1) → 5 = ((3 + 1) + 𝑟))
132126, 131eqtrd 2794 . . . . . . . . . . . . . 14 ((𝑛 = 5 ∧ 𝑟 = 1) → 𝑛 = ((3 + 1) + 𝑟))
133120, 132rspcedeq2vd 3458 . . . . . . . . . . . . 13 (𝑛 = 5 → ∃𝑟𝑃 𝑛 = ((3 + 1) + 𝑟))
134120, 125, 133rspcedvd 3456 . . . . . . . . . . . 12 (𝑛 = 5 → ∃𝑞𝑃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟))
135114, 119, 134rspcedvd 3456 . . . . . . . . . . 11 (𝑛 = 5 → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
136108, 135syl 17 . . . . . . . . . 10 (𝑛 ∈ {5} → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
137107, 136jaoi 393 . . . . . . . . 9 ((𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) ∨ 𝑛 ∈ {5}) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
13828, 137sylbi 207 . . . . . . . 8 (𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
139138a1d 25 . . . . . . 7 (𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
14027, 139sylbi 207 . . . . . 6 (𝑛 ∈ (3...(6 − 1)) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
141 sbgoldbm 42200 . . . . . . . 8 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
142 rspa 3068 . . . . . . . . . 10 ((∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
143 ssun2 3920 . . . . . . . . . . . . 13 ℙ ⊆ ({1} ∪ ℙ)
144143, 36sseqtr4i 3779 . . . . . . . . . . . 12 ℙ ⊆ 𝑃
145 rexss 3810 . . . . . . . . . . . 12 (ℙ ⊆ 𝑃 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
146144, 145ax-mp 5 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
147 rexss 3810 . . . . . . . . . . . . . . 15 (ℙ ⊆ 𝑃 → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
148144, 147ax-mp 5 . . . . . . . . . . . . . 14 (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
149 rexss 3810 . . . . . . . . . . . . . . . . . 18 (ℙ ⊆ 𝑃 → (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
150144, 149ax-mp 5 . . . . . . . . . . . . . . . . 17 (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
151 simpr 479 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → 𝑛 = ((𝑝 + 𝑞) + 𝑟))
152151reximi 3149 . . . . . . . . . . . . . . . . 17 (∃𝑟𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
153150, 152sylbi 207 . . . . . . . . . . . . . . . 16 (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
154153adantl 473 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
155154reximi 3149 . . . . . . . . . . . . . 14 (∃𝑞𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
156148, 155sylbi 207 . . . . . . . . . . . . 13 (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
157156adantl 473 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
158157reximi 3149 . . . . . . . . . . 11 (∃𝑝𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
159146, 158sylbi 207 . . . . . . . . . 10 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
160142, 159syl 17 . . . . . . . . 9 ((∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
161160ex 449 . . . . . . . 8 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → (𝑛 ∈ (ℤ‘6) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
162141, 161syl 17 . . . . . . 7 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ (ℤ‘6) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
163162com12 32 . . . . . 6 (𝑛 ∈ (ℤ‘6) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
164140, 163jaoi 393 . . . . 5 ((𝑛 ∈ (3...(6 − 1)) ∨ 𝑛 ∈ (ℤ‘6)) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
16514, 164sylbi 207 . . . 4 (𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
166165com12 32 . . 3 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
16713, 166syl5bi 232 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ (ℤ‘3) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
1681, 167ralrimi 3095 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘3)∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cun 3713  wss 3715  {csn 4321   class class class wbr 4804  cfv 6049  (class class class)co 6814  1c1 10149   + caddc 10151   < clt 10286  cle 10287  cmin 10478  2c2 11282  3c3 11283  4c4 11284  5c5 11285  6c6 11286  cz 11589  cuz 11899  ...cfz 12539  ..^cfzo 12679  cprime 15607   Even ceven 42065   GoldbachEven cgbe 42161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-prm 15608  df-even 42067  df-odd 42068  df-gbe 42164  df-gbow 42165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator