![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ12r | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sbequ12r | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2149 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
2 | 1 | bicomd 213 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
3 | 2 | equcoms 1993 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 [wsb 1937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-sb 1938 |
This theorem is referenced by: sbequ12a 2151 sbid 2152 sb5rf 2450 sb6rf 2451 2sb5rf 2479 2sb6rf 2480 opeliunxp 5204 isarep1 6015 findes 7138 axrepndlem1 9452 axrepndlem2 9453 nn0min 29695 esumcvg 30276 bj-abbi 32900 bj-sbidmOLD 32956 wl-nfs1t 33454 wl-sb6rft 33460 wl-equsb4 33468 wl-ax11-lem5 33496 sbcalf 34047 sbcexf 34048 opeliun2xp 42436 |
Copyright terms: Public domain | W3C validator |