Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcrot3 Structured version   Visualization version   GIF version

Theorem sbcrot3 37857
Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
sbcrot3 ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑)
Distinct variable groups:   𝐴,𝑏   𝐴,𝑐   𝐵,𝑎   𝐶,𝑎   𝑎,𝑐   𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝐴(𝑎)   𝐵(𝑏,𝑐)   𝐶(𝑏,𝑐)

Proof of Theorem sbcrot3
StepHypRef Expression
1 sbccom 3650 . 2 ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑[𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑)
2 sbccom 3650 . . 3 ([𝐴 / 𝑎][𝐶 / 𝑐]𝜑[𝐶 / 𝑐][𝐴 / 𝑎]𝜑)
32sbcbii 3632 . 2 ([𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑)
41, 3bitri 264 1 ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  [wsbc 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-v 3342  df-sbc 3577
This theorem is referenced by:  sbcrot5  37858  2rexfrabdioph  37862  3rexfrabdioph  37863  4rexfrabdioph  37864  7rexfrabdioph  37866
  Copyright terms: Public domain W3C validator