![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcrel | Structured version Visualization version GIF version |
Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
sbcrel | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel ⦋𝐴 / 𝑥⦌𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcssg 4224 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ ⦋𝐴 / 𝑥⦌(V × V))) | |
2 | csbconstg 3695 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(V × V) = (V × V)) | |
3 | 2 | sseq2d 3782 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑅 ⊆ ⦋𝐴 / 𝑥⦌(V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V))) |
4 | 1, 3 | bitrd 268 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V))) |
5 | df-rel 5256 | . . 3 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
6 | 5 | sbcbii 3643 | . 2 ⊢ ([𝐴 / 𝑥]Rel 𝑅 ↔ [𝐴 / 𝑥]𝑅 ⊆ (V × V)) |
7 | df-rel 5256 | . 2 ⊢ (Rel ⦋𝐴 / 𝑥⦌𝑅 ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V)) | |
8 | 4, 6, 7 | 3bitr4g 303 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel ⦋𝐴 / 𝑥⦌𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2145 Vcvv 3351 [wsbc 3587 ⦋csb 3682 ⊆ wss 3723 × cxp 5247 Rel wrel 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-in 3730 df-ss 3737 df-nul 4064 df-rel 5256 |
This theorem is referenced by: sbcfung 6055 cnfinltrel 33578 |
Copyright terms: Public domain | W3C validator |