MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcralt Structured version   Visualization version   GIF version

Theorem sbcralt 3508
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
Assertion
Ref Expression
sbcralt ((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcralt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcco 3456 . 2 ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑)
2 simpl 473 . . 3 ((𝐴𝑉𝑦𝐴) → 𝐴𝑉)
3 sbsbc 3437 . . . . 5 ([𝑧 / 𝑥]∀𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑)
4 nfcv 2763 . . . . . . 7 𝑥𝐵
5 nfs1v 2436 . . . . . . 7 𝑥[𝑧 / 𝑥]𝜑
64, 5nfral 2944 . . . . . 6 𝑥𝑦𝐵 [𝑧 / 𝑥]𝜑
7 sbequ12 2110 . . . . . . 7 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
87ralbidv 2985 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑))
96, 8sbie 2407 . . . . 5 ([𝑧 / 𝑥]∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑)
103, 9bitr3i 266 . . . 4 ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑)
11 nfnfc1 2766 . . . . . . 7 𝑦𝑦𝐴
12 nfcvd 2764 . . . . . . . 8 (𝑦𝐴𝑦𝑧)
13 id 22 . . . . . . . 8 (𝑦𝐴𝑦𝐴)
1412, 13nfeqd 2771 . . . . . . 7 (𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴)
1511, 14nfan1 2067 . . . . . 6 𝑦(𝑦𝐴𝑧 = 𝐴)
16 dfsbcq2 3436 . . . . . . 7 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
1716adantl 482 . . . . . 6 ((𝑦𝐴𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
1815, 17ralbid 2982 . . . . 5 ((𝑦𝐴𝑧 = 𝐴) → (∀𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
1918adantll 750 . . . 4 (((𝐴𝑉𝑦𝐴) ∧ 𝑧 = 𝐴) → (∀𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
2010, 19syl5bb 272 . . 3 (((𝐴𝑉𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
212, 20sbcied 3470 . 2 ((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
221, 21syl5bbr 274 1 ((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  [wsb 1879  wcel 1989  wnfc 2750  wral 2911  [wsbc 3433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-v 3200  df-sbc 3434
This theorem is referenced by:  sbcrext  3509  sbcrextOLD  3510  sbcralg  3511
  Copyright terms: Public domain W3C validator