Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcoreleleq Structured version   Visualization version   GIF version

Theorem sbcoreleleq 39239
Description: Substitution of a setvar variable for another setvar variable in a 3-conjunct formula. Derived automatically from sbcoreleleqVD 39586. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcoreleleq (𝐴𝑉 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcoreleleq
StepHypRef Expression
1 sbcel2gv 3629 . . 3 (𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝑦𝑥𝐴))
2 sbcel1v 3628 . . . 4 ([𝐴 / 𝑦]𝑦𝑥𝐴𝑥)
32a1i 11 . . 3 (𝐴𝑉 → ([𝐴 / 𝑦]𝑦𝑥𝐴𝑥))
4 eqsbc3r 3625 . . 3 (𝐴𝑉 → ([𝐴 / 𝑦]𝑥 = 𝑦𝑥 = 𝐴))
5 3orbi123 39211 . . . 4 ((([𝐴 / 𝑦]𝑥𝑦𝑥𝐴) ∧ ([𝐴 / 𝑦]𝑦𝑥𝐴𝑥) ∧ ([𝐴 / 𝑦]𝑥 = 𝑦𝑥 = 𝐴)) → (([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
653impexpbicomi 39180 . . 3 (([𝐴 / 𝑦]𝑥𝑦𝑥𝐴) → (([𝐴 / 𝑦]𝑦𝑥𝐴𝑥) → (([𝐴 / 𝑦]𝑥 = 𝑦𝑥 = 𝐴) → ((𝑥𝐴𝐴𝑥𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦)))))
71, 3, 4, 6syl3c 66 . 2 (𝐴𝑉 → ((𝑥𝐴𝐴𝑥𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦)))
8 sbc3or 39232 . 2 ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦))
97, 8syl6rbbr 279 1 (𝐴𝑉 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3o 1071   = wceq 1624  wcel 2131  [wsbc 3568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-v 3334  df-sbc 3569
This theorem is referenced by:  tratrb  39240  tratrbVD  39588
  Copyright terms: Public domain W3C validator