MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco2 Structured version   Visualization version   GIF version

Theorem sbco2 2419
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Sep-2018.)
Hypothesis
Ref Expression
sbco2.1 𝑧𝜑
Assertion
Ref Expression
sbco2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco2
StepHypRef Expression
1 sbequ12 2113 . . . 4 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑))
2 sbequ 2380 . . . 4 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
31, 2bitr3d 270 . . 3 (𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
43sps 2058 . 2 (∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
5 nfnae 2322 . . 3 𝑧 ¬ ∀𝑧 𝑧 = 𝑦
6 sbco2.1 . . . 4 𝑧𝜑
76nfsb4 2394 . . 3 (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
82a1i 11 . . 3 (¬ ∀𝑧 𝑧 = 𝑦 → (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)))
95, 7, 8sbied 2413 . 2 (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
104, 9pm2.61i 176 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wal 1478  wnf 1705  [wsb 1882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883
This theorem is referenced by:  sbco2d  2420  equsb3ALT  2437  elsb3  2438  elsb4  2439  sb7f  2457  sbco4lem  2469  sbco4  2470  eqsb3  2731  clelsb3  2732  cbvab  2749  sbralie  3177  sbcco  3445  clelsb3f  29160  bj-clelsb3  32468
  Copyright terms: Public domain W3C validator