![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbco | Structured version Visualization version GIF version |
Description: A composition law for substitution. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) |
Ref | Expression |
---|---|
sbco | ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcom3 2548 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑦]𝜑) | |
2 | sbid 2261 | . . 3 ⊢ ([𝑦 / 𝑦]𝜑 ↔ 𝜑) | |
3 | 2 | sbbii 2053 | . 2 ⊢ ([𝑦 / 𝑥][𝑦 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
4 | 1, 3 | bitri 264 | 1 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 [wsb 2046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-10 2168 ax-12 2196 ax-13 2391 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1854 df-nf 1859 df-sb 2047 |
This theorem is referenced by: sbid2 2550 sbco3 2554 sb6a 2585 |
Copyright terms: Public domain | W3C validator |