Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco Structured version   Visualization version   GIF version

Theorem sbco 2549
 Description: A composition law for substitution. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.)
Assertion
Ref Expression
sbco ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco
StepHypRef Expression
1 sbcom3 2548 . 2 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑦]𝜑)
2 sbid 2261 . . 3 ([𝑦 / 𝑦]𝜑𝜑)
32sbbii 2053 . 2 ([𝑦 / 𝑥][𝑦 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
41, 3bitri 264 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196  [wsb 2046 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-12 2196  ax-13 2391 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1854  df-nf 1859  df-sb 2047 This theorem is referenced by:  sbid2  2550  sbco3  2554  sb6a  2585
 Copyright terms: Public domain W3C validator