MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcng Structured version   Visualization version   GIF version

Theorem sbcng 3617
Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcng (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))

Proof of Theorem sbcng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3579 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥] ¬ 𝜑[𝐴 / 𝑥] ¬ 𝜑))
2 dfsbcq2 3579 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32notbid 307 . 2 (𝑦 = 𝐴 → (¬ [𝑦 / 𝑥]𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
4 sbn 2528 . 2 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
51, 3, 4vtoclbg 3407 1 (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1632  [wsb 2046  wcel 2139  [wsbc 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-v 3342  df-sbc 3577
This theorem is referenced by:  sbcn1  3622  sbcrext  3652  sbcrextOLD  3653  sbcnel12g  4128  sbcne12  4129  difopab  5409  bnj23  31093  bnj110  31235  bnj1204  31387  sbcni  34227  frege124d  38555  onfrALTlem5  39259  onfrALTlem5VD  39620
  Copyright terms: Public domain W3C validator