![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcn1 | Structured version Visualization version GIF version |
Description: Move negation in and out of class substitution. One direction of sbcng 3509 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
sbcn1 | ⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3478 | . 2 ⊢ ([𝐴 / 𝑥] ¬ 𝜑 → 𝐴 ∈ V) | |
2 | sbcng 3509 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | biimpd 219 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑)) |
4 | 1, 3 | mpcom 38 | 1 ⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2030 Vcvv 3231 [wsbc 3468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-v 3233 df-sbc 3469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |