Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcim2gVD Structured version   Visualization version   GIF version

Theorem sbcim2gVD 39425
Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg 3510. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcim2g 39065 is sbcim2gVD 39425 without virtual deductions and was automatically derived from sbcim2gVD 39425.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ) 3:1,2: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))   ) 4:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 5:3,4: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 6:5: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))   ) 7:: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 8:4,7: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))   ) 9:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))   ) 10:8,9: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ) 11:10: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)))   ) 12:6,11: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))   ) qed:12: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcim2gVD (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))

Proof of Theorem sbcim2gVD
StepHypRef Expression
1 idn1 39107 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
2 idn2 39155 . . . . . 6 (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   )
3 sbcimg 3510 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
43biimpd 219 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
51, 2, 4e12 39268 . . . . 5 (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))   )
6 sbcimg 3510 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
71, 6e1a 39169 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
8 imbi2 337 . . . . . 6 (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
98biimpcd 239 . . . . 5 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) → (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
105, 7, 9e21 39274 . . . 4 (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
1110in2 39147 . . 3 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))   )
12 idn2 39155 . . . . . 6 (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
13 biimpr 210 . . . . . . 7 (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) → [𝐴 / 𝑥](𝜓𝜒)))
1413imim2d 57 . . . . . 6 (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
157, 12, 14e12 39268 . . . . 5 (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))   )
161, 3e1a 39169 . . . . 5 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)))   )
17 biimpr 210 . . . . . 6 (([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))) → (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒))))
1817com12 32 . . . . 5 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) → (([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒))))
1915, 16, 18e21 39274 . . . 4 (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   )
2019in2 39147 . . 3 (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒)))   )
21 impbi 198 . . 3 (([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))) → ((([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒))) → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))))
2211, 20, 21e11 39230 . 2 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))   )
2322in1 39104 1 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∈ wcel 2030  [wsbc 3468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-v 3233  df-sbc 3469  df-vd1 39103  df-vd2 39111 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator