MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciegf Structured version   Visualization version   GIF version

Theorem sbciegf 3465
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
sbciegf.1 𝑥𝜓
sbciegf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbciegf (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbciegf
StepHypRef Expression
1 sbciegf.1 . 2 𝑥𝜓
2 sbciegf.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32ax-gen 1721 . 2 𝑥(𝑥 = 𝐴 → (𝜑𝜓))
4 sbciegft 3464 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
51, 3, 4mp3an23 1415 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1480   = wceq 1482  wnf 1707  wcel 1989  [wsbc 3433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-v 3200  df-sbc 3434
This theorem is referenced by:  sbcieg  3466  opelopabgf  4993  opelopabf  4998  eqerlem  7773  iunxsngf  29359  bnj919  30822  bnj1464  30899  bnj1123  31039  bnj1373  31083  poimirlem25  33414  sbccomieg  37183  aomclem6  37455  fveqsb  38483  rexsngf  39046
  Copyright terms: Public domain W3C validator