Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcied2 Structured version   Visualization version   GIF version

Theorem sbcied2 3506
 Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
Hypotheses
Ref Expression
sbcied2.1 (𝜑𝐴𝑉)
sbcied2.2 (𝜑𝐴 = 𝐵)
sbcied2.3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
Assertion
Ref Expression
sbcied2 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcied2
StepHypRef Expression
1 sbcied2.1 . 2 (𝜑𝐴𝑉)
2 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
3 sbcied2.2 . . . 4 (𝜑𝐴 = 𝐵)
42, 3sylan9eqr 2707 . . 3 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐵)
5 sbcied2.3 . . 3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
64, 5syldan 486 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
71, 6sbcied 3505 1 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  [wsbc 3468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-v 3233  df-sbc 3469 This theorem is referenced by:  iscat  16380  sectffval  16457  issubc  16542  isfunc  16571  ismgm  17290  issgrp  17332  isnsg  17670  isring  18597  islbs  19124  isdomn  19342  isassa  19363  opsrval  19522  isuhgr  26000  isushgr  26001  isupgr  26024  isumgr  26035  isuspgr  26092  isusgr  26093  isfrgr  27238  isrng  42201
 Copyright terms: Public domain W3C validator