![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcie2g | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3599 avoids a disjointness condition on 𝑥, 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
sbcie2g.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
sbcie2g.2 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcie2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3566 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | sbcie2g.2 | . 2 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
3 | sbsbc 3568 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
4 | nfv 1980 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | sbcie2g.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | sbie 2533 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
7 | 3, 6 | bitr3i 266 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
8 | 1, 2, 7 | vtoclbg 3395 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1620 [wsb 2034 ∈ wcel 2127 [wsbc 3564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-v 3330 df-sbc 3565 |
This theorem is referenced by: sbcel2gv 3625 csbie2g 3693 brab1 4840 bnj90 31068 bnj124 31219 riotasvd 34714 |
Copyright terms: Public domain | W3C validator |