![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
sbcie.1 | ⊢ 𝐴 ∈ V |
sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbcieg 3605 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1628 ∈ wcel 2135 Vcvv 3336 [wsbc 3572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-12 2192 ax-13 2387 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-v 3338 df-sbc 3573 |
This theorem is referenced by: tfinds2 7224 findcard2 8361 ac6sfi 8365 ac6num 9489 fpwwe 9656 nn1suc 11229 wrdind 13672 cjth 14038 fprodser 14874 prmind2 15596 joinlem 17208 meetlem 17222 mrcmndind 17563 isghm 17857 islmod 19065 islindf 20349 fgcl 21879 cfinfil 21894 csdfil 21895 supfil 21896 fin1aufil 21933 quotval 24242 dfconngr1 27336 isconngr 27337 isconngr1 27338 bnj62 31091 bnj610 31120 bnj976 31151 bnj106 31241 bnj125 31245 bnj154 31251 bnj155 31252 bnj526 31261 bnj540 31265 bnj591 31284 bnj609 31290 bnj893 31301 bnj1417 31412 soseq 32056 cnfinltrel 33548 poimirlem27 33745 sdclem2 33847 fdc 33850 fdc1 33851 lshpkrlem3 34898 hdmap1fval 37584 hdmapfval 37617 rabren3dioph 37877 2nn0ind 38008 zindbi 38009 onfrALTlem5 39255 onfrALTlem5VD 39616 |
Copyright terms: Public domain | W3C validator |