![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version |
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3469 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | elex 3243 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
3 | 1, 2 | sylbi 207 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 {cab 2637 Vcvv 3231 [wsbc 3468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1526 df-ex 1745 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-v 3233 df-sbc 3469 |
This theorem is referenced by: sbcco 3491 sbc5 3493 sbcan 3511 sbcor 3512 sbcn1 3514 sbcim1 3515 sbcbi1 3516 sbcal 3518 sbcex2 3519 sbcel1v 3528 sbcel21v 3530 sbcimdv 3531 sbcimdvOLD 3532 sbcrext 3544 sbcrextOLD 3545 sbcreu 3548 spesbc 3554 csbprc 4013 csbprcOLD 4014 sbcel12 4016 sbcne12 4019 sbcel2 4022 sbccsb2 4038 sbcbr123 4739 opelopabsb 5014 csbopab 5037 csbxp 5234 csbiota 5919 csbriota 6663 fi1uzind 13317 bj-csbprc 33029 sbccomieg 37674 |
Copyright terms: Public domain | W3C validator |