![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceqbid | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
Ref | Expression |
---|---|
sbceqbid.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sbceqbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbceqbid | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqbid.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sbceqbid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | abbidv 2879 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
4 | 1, 3 | eleq12d 2833 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐵 ∈ {𝑥 ∣ 𝜒})) |
5 | df-sbc 3577 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
6 | df-sbc 3577 | . 2 ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝐵 ∈ {𝑥 ∣ 𝜒}) | |
7 | 4, 5, 6 | 3bitr4g 303 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 {cab 2746 [wsbc 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-sbc 3577 |
This theorem is referenced by: fpwwe2cbv 9644 fpwwe2lem2 9646 fpwwe2lem3 9647 fi1uzind 13471 isprs 17131 isdrs 17135 istos 17236 isdlat 17394 issrg 18707 islmod 19069 fdc 33854 hdmap1ffval 37587 hdmap1fval 37588 hdmapffval 37620 hdmapfval 37621 hgmapffval 37679 hgmapfval 37680 sbccomieg 37859 rexrabdioph 37860 |
Copyright terms: Public domain | W3C validator |