Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq2a Structured version   Visualization version   GIF version

Theorem sbceq2a 3597
 Description: Equality theorem for class substitution. Class version of sbequ12r 2267. (Contributed by NM, 4-Jan-2017.)
Assertion
Ref Expression
sbceq2a (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))

Proof of Theorem sbceq2a
StepHypRef Expression
1 sbceq1a 3596 . . 3 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
21eqcoms 2778 . 2 (𝐴 = 𝑥 → (𝜑[𝐴 / 𝑥]𝜑))
32bicomd 213 1 (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1630  [wsbc 3585 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-12 2202  ax-ext 2750 This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1852  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-sbc 3586 This theorem is referenced by:  tfindes  7208  rabssnn0fi  12992  indexa  33853  fdc  33866  fdc1  33867  alrimii  34249  tratrbVD  39613
 Copyright terms: Public domain W3C validator