![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12 2149. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 2152 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
2 | dfsbcq2 3471 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | syl5bbr 274 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 [wsb 1937 [wsbc 3468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-sbc 3469 |
This theorem is referenced by: sbceq2a 3480 elrabsf 3507 cbvralcsf 3598 rabsnifsb 4289 euotd 5004 wfisg 5753 elfvmptrab1 6344 ralrnmpt 6408 riotass2 6678 riotass 6679 oprabv 6745 elovmpt2rab 6922 elovmpt2rab1 6923 ovmpt3rabdm 6934 elovmpt3rab1 6935 tfindes 7104 sbcopeq1a 7264 mpt2xopoveq 7390 findcard2 8241 ac6sfi 8245 indexfi 8315 nn0ind-raph 11515 fzrevral 12463 wrdind 13522 wrd2ind 13523 prmind2 15445 elmptrab 21678 isfildlem 21708 gropd 25968 grstructd 25969 vtocl2d 29442 ifeqeqx 29487 bnj919 30963 bnj976 30974 bnj1468 31042 bnj110 31054 bnj150 31072 bnj151 31073 bnj607 31112 bnj873 31120 bnj849 31121 bnj1388 31227 setinds 31807 dfon2lem1 31812 tfisg 31840 frpoinsg 31866 frinsg 31870 indexdom 33659 sdclem2 33668 sdclem1 33669 fdc1 33672 riotasv2s 34562 elimhyps 34565 sbccomieg 37674 rexrabdioph 37675 rexfrabdioph 37676 aomclem6 37946 pm13.13a 38925 pm13.13b 38926 pm13.14 38927 tratrb 39063 uzwo4 39535 |
Copyright terms: Public domain | W3C validator |