![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcel2gv | Structured version Visualization version GIF version |
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
sbcel2gv | ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2792 | . 2 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | |
2 | eleq2 2792 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | sbcie2g 3575 | 1 ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2103 [wsbc 3541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-v 3306 df-sbc 3542 |
This theorem is referenced by: sbcel21v 3603 csbvarg 4111 bnj92 31160 bnj539 31189 frege77 38653 sbcoreleleq 39164 trsbc 39169 onfrALTlem5 39176 sbcoreleleqVD 39511 trsbcVD 39529 onfrALTlem5VD 39537 |
Copyright terms: Public domain | W3C validator |