![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcbr | Structured version Visualization version GIF version |
Description: Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
sbcbr | ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr123 4739 | . 2 ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) | |
2 | csbconstg 3579 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | csbconstg 3579 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
4 | 2, 3 | breq12d 4698 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶)) |
5 | br0 4734 | . . . . 5 ⊢ ¬ ⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶 | |
6 | csbprc 4013 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑅 = ∅) | |
7 | 6 | breqd 4696 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶)) |
8 | 5, 7 | mtbiri 316 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) |
9 | br0 4734 | . . . . 5 ⊢ ¬ 𝐵∅𝐶 | |
10 | 6 | breqd 4696 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝐵⦋𝐴 / 𝑥⦌𝑅𝐶 ↔ 𝐵∅𝐶)) |
11 | 9, 10 | mtbiri 316 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
12 | 8, 11 | 2falsed 365 | . . 3 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶)) |
13 | 4, 12 | pm2.61i 176 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
14 | 1, 13 | bitri 264 | 1 ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∈ wcel 2030 Vcvv 3231 [wsbc 3468 ⦋csb 3566 ∅c0 3948 class class class wbr 4685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 |
This theorem is referenced by: csbcnv 5338 |
Copyright terms: Public domain | W3C validator |