![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version |
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1992 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sbcbid 3630 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 [wsbc 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-sbc 3577 |
This theorem is referenced by: sbcbii 3632 opelopabsb 5135 opelopabgf 5145 opelopabf 5150 sbcfng 6203 sbcfg 6204 fmptsnd 6600 wrd2ind 13697 islmod 19089 elmptrab 21852 f1od2 29829 isomnd 30031 isorng 30129 indexa 33859 sdclem2 33869 sdclem1 33870 fdc 33872 sbcalf 34248 sbcexf 34249 hdmap1ffval 37605 hdmap1fval 37606 hdmapffval 37638 hdmapfval 37639 hgmapffval 37697 hgmapfval 37698 rexrabdioph 37878 rexfrabdioph 37879 2rexfrabdioph 37880 3rexfrabdioph 37881 4rexfrabdioph 37882 6rexfrabdioph 37883 7rexfrabdioph 37884 2sbc6g 39136 2sbc5g 39137 |
Copyright terms: Public domain | W3C validator |