Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcangOLD Structured version   Visualization version   GIF version

Theorem sbcangOLD 39259
 Description: Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.) Obsolete as of 17-Aug-2018. Use sbcan 3619 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbcangOLD (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))

Proof of Theorem sbcangOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3579 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
2 dfsbcq2 3579 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
3 dfsbcq2 3579 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
42, 3anbi12d 749 . 2 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
5 sban 2536 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
61, 4, 5vtoclbg 3407 1 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632  [wsb 2046   ∈ wcel 2139  [wsbc 3576 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-v 3342  df-sbc 3577 This theorem is referenced by:  csbingVD  39637  onfrALTlem4VD  39639  csbxpgVD  39647  csbunigVD  39651
 Copyright terms: Public domain W3C validator