Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcalgOLD Structured version   Visualization version   GIF version

Theorem sbcalgOLD 39277
Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.) Obsolete as of 17-Aug-2018. Use sbcal 3637 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbcalgOLD (𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcalgOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3590 . 2 (𝑧 = 𝐴 → ([𝑧 / 𝑦]∀𝑥𝜑[𝐴 / 𝑦]𝑥𝜑))
2 dfsbcq2 3590 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑[𝐴 / 𝑦]𝜑))
32albidv 2001 . 2 (𝑧 = 𝐴 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑))
4 sbal 2610 . 2 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
51, 3, 4vtoclbg 3418 1 (𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1629   = wceq 1631  [wsb 2049  wcel 2145  [wsbc 3587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-v 3353  df-sbc 3588
This theorem is referenced by:  trsbcVD  39635  sbcssgVD  39641
  Copyright terms: Public domain W3C validator