Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbc3orgOLD Structured version   Visualization version   GIF version

Theorem sbc3orgOLD 39161
 Description: sbcorgOLD 39159 with a 3-disjuncts. This proof is sbc3orgVD 39502 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbc3orgOLD (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))

Proof of Theorem sbc3orgOLD
StepHypRef Expression
1 sbcor 3585 . . . 4 ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))
21a1i 11 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒)))
3 df-3or 1073 . . . . . 6 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
43bicomi 214 . . . . 5 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
54sbcbii 3597 . . . 4 ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))
65a1i 11 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]((𝜑𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒)))
7 sbcor 3585 . . . . 5 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
87a1i 11 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
98orbi1d 741 . . 3 (𝐴𝑉 → (([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)))
102, 6, 93bitr3d 298 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒)))
11 df-3or 1073 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))
1210, 11syl6bbr 278 1 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∨ w3o 1071   ∈ wcel 2103  [wsbc 3541 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clab 2711  df-cleq 2717  df-clel 2720  df-v 3306  df-sbc 3542 This theorem is referenced by:  sbcoreleleqVD  39511
 Copyright terms: Public domain W3C validator