MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc3an Structured version   Visualization version   GIF version

Theorem sbc3an 3527
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbc3an ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))

Proof of Theorem sbc3an
StepHypRef Expression
1 df-3an 1056 . . . 4 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21sbcbii 3524 . . 3 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ [𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒))
3 sbcan 3511 . . 3 ([𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∧ [𝐴 / 𝑥]𝜒))
4 sbcan 3511 . . . 4 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
54anbi1i 731 . . 3 (([𝐴 / 𝑥](𝜑𝜓) ∧ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
62, 3, 53bitri 286 . 2 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
7 df-3an 1056 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
86, 7bitr4i 267 1 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1054  [wsbc 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-v 3233  df-sbc 3469
This theorem is referenced by:  bnj156  30922  bnj206  30925  bnj976  30974  bnj121  31066  bnj130  31070  bnj581  31104  bnj1040  31166  csbwrecsg  33303  topdifinffinlem  33325  rdgeqoa  33348  cdlemkid3N  36538  cdlemkid4  36539
  Copyright terms: Public domain W3C validator