MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbabel Structured version   Visualization version   GIF version

Theorem sbabel 2822
Description: Theorem to move a substitution in and out of a class abstraction. (Contributed by NM, 27-Sep-2003.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 26-Dec-2019.)
Hypothesis
Ref Expression
sbabel.1 𝑥𝐴
Assertion
Ref Expression
sbabel ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem sbabel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 sbex 2491 . . 3 ([𝑦 / 𝑥]∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ ∃𝑣[𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)))
2 sban 2427 . . . . 5 ([𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ ([𝑦 / 𝑥]𝑣𝐴 ∧ [𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑)))
3 sbabel.1 . . . . . . . 8 𝑥𝐴
43nfcri 2787 . . . . . . 7 𝑥 𝑣𝐴
54sbf 2408 . . . . . 6 ([𝑦 / 𝑥]𝑣𝐴𝑣𝐴)
6 nfv 1883 . . . . . . . . 9 𝑥 𝑧𝑣
76sbf 2408 . . . . . . . 8 ([𝑦 / 𝑥]𝑧𝑣𝑧𝑣)
87sbrbis 2433 . . . . . . 7 ([𝑦 / 𝑥](𝑧𝑣𝜑) ↔ (𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑))
98sbalv 2492 . . . . . 6 ([𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑) ↔ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑))
105, 9anbi12i 733 . . . . 5 (([𝑦 / 𝑥]𝑣𝐴 ∧ [𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑)) ↔ (𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
112, 10bitri 264 . . . 4 ([𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ (𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
1211exbii 1814 . . 3 (∃𝑣[𝑦 / 𝑥](𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
131, 12bitri 264 . 2 ([𝑦 / 𝑥]∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)) ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
14 clabel 2778 . . 3 ({𝑧𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)))
1514sbbii 1944 . 2 ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ [𝑦 / 𝑥]∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣𝜑)))
16 clabel 2778 . 2 ({𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣𝐴 ∧ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑)))
1713, 15, 163bitr4i 292 1 ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  wal 1521  wex 1744  [wsb 1937  wcel 2030  {cab 2637  wnfc 2780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator