Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb9 Structured version   Visualization version   GIF version

Theorem sb9 2563
 Description: Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) Allow a shortening of sb9i 2564. (Revised by Wolf Lammen, 15-Jun-2019.)
Assertion
Ref Expression
sb9 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb9
StepHypRef Expression
1 sbequ12a 2260 . . . . 5 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))
21equcoms 2102 . . . 4 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))
32sps 2202 . . 3 (∀𝑥 𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))
43dral1 2465 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
5 nfnae 2460 . . 3 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
6 nfnae 2460 . . 3 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
7 nfsb2 2497 . . . 4 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦[𝑥 / 𝑦]𝜑)
87naecoms 2455 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦[𝑥 / 𝑦]𝜑)
9 nfsb2 2497 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
102a1i 11 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)))
115, 6, 8, 9, 10cbv2 2415 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
124, 11pm2.61i 176 1 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196  ∀wal 1630  Ⅎwnf 1857  [wsb 2046 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047 This theorem is referenced by:  sb9i  2564
 Copyright terms: Public domain W3C validator