 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb7f Structured version   Visualization version   GIF version

Theorem sb7f 2601
 Description: This version of dfsb7 2603 does not require that 𝜑 and 𝑧 be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-5 1991 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 2050 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sb7f.1 𝑧𝜑
Assertion
Ref Expression
sb7f ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sb7f
StepHypRef Expression
1 sb7f.1 . . . 4 𝑧𝜑
21sb5f 2533 . . 3 ([𝑧 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑧𝜑))
32sbbii 2056 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧𝜑))
41sbco2 2562 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
5 sb5 2273 . 2 ([𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧𝜑) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
63, 4, 53bitr3i 290 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 382  ∃wex 1852  Ⅎwnf 1856  [wsb 2049 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050 This theorem is referenced by:  sb7h  2602  dfsb7  2603
 Copyright terms: Public domain W3C validator