![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb6x | Structured version Visualization version GIF version |
Description: Equivalence involving substitution for a variable not free. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sb6x.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sb6x | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6x.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | sbf 2527 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
3 | biidd 252 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
4 | 1, 3 | equsal 2446 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
5 | 2, 4 | bitr4i 267 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1629 Ⅎwnf 1856 [wsb 2049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-12 2203 ax-13 2408 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-ex 1853 df-nf 1858 df-sb 2050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |