![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb6 | Structured version Visualization version GIF version |
Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" is sb2 2498 and does not require any dv condition. Theorem sb6f 2532 replaces the dv condition with a non-freeness hypothesis. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) Remove dependency on ax-13 2408. (Revised by BJ, 11-Sep-2019.) |
Ref | Expression |
---|---|
sb6 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 2052 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
2 | sb56 2271 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | 1, 2 | sylib 208 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
4 | sp 2207 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
5 | equs4v 2088 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
6 | df-sb 2050 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
7 | 4, 5, 6 | sylanbrc 572 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
8 | 3, 7 | impbii 199 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∀wal 1629 ∃wex 1852 [wsb 2049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-10 2174 ax-12 2203 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-ex 1853 df-nf 1858 df-sb 2050 |
This theorem is referenced by: sb5 2273 nfs1v 2274 2sb6 2277 sb6a 2596 2eu6 2707 |
Copyright terms: Public domain | W3C validator |