![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sb5ALTVD | Structured version Visualization version GIF version |
Description: The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 20
Excercise 3.a., which is sb5 2458, found in the "Answers to Starred
Exercises" on page 457 of "Understanding Symbolic Logic", Fifth
Edition (2008), by Virginia Klenk. The same proof may also be
interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It
was completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. sb5ALT 39048 is sb5ALTVD 39463 without virtual deductions and
was automatically derived from sb5ALTVD 39463.
|
Ref | Expression |
---|---|
sb5ALTVD | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 39107 | . . . . . 6 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥]𝜑 ) | |
2 | equsb1 2396 | . . . . . 6 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
3 | sban 2427 | . . . . . . 7 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑)) | |
4 | 3 | simplbi2com 656 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑))) |
5 | 1, 2, 4 | e10 39236 | . . . . 5 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) ) |
6 | spsbe 1941 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
7 | 5, 6 | e1a 39169 | . . . 4 ⊢ ( [𝑦 / 𝑥]𝜑 ▶ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ) |
8 | 7 | in1 39104 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
9 | hbs1 2464 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
10 | idn2 39155 | . . . . . 6 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ (𝑥 = 𝑦 ∧ 𝜑) ) | |
11 | simpr 476 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑) | |
12 | 10, 11 | e2 39173 | . . . . 5 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ 𝜑 ) |
13 | simpl 472 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝑥 = 𝑦) | |
14 | 10, 13 | e2 39173 | . . . . 5 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ 𝑥 = 𝑦 ) |
15 | sbequ1 2148 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
16 | 15 | com12 32 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑)) |
17 | 12, 14, 16 | e22 39213 | . . . 4 ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑) ▶ [𝑦 / 𝑥]𝜑 ) |
18 | 9, 17 | exinst 39166 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) |
19 | 8, 18 | pm3.2i 470 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) |
20 | impbi 198 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) | |
21 | 20 | imp 444 | . 2 ⊢ ((([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
22 | 19, 21 | e0a 39316 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∃wex 1744 [wsb 1937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 df-sb 1938 df-vd1 39103 df-vd2 39111 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |