MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb10f Structured version   Visualization version   GIF version

Theorem sb10f 2455
Description: Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sb10f.1 𝑥𝜑
Assertion
Ref Expression
sb10f ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sb10f
StepHypRef Expression
1 sb10f.1 . . . 4 𝑥𝜑
21nfsb 2439 . . 3 𝑥[𝑦 / 𝑧]𝜑
3 sbequ 2375 . . 3 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
42, 3equsexv 2106 . 2 (∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑) ↔ [𝑦 / 𝑧]𝜑)
54bicomi 214 1 ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wex 1701  wnf 1705  [wsb 1877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator