![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saluni | Structured version Visualization version GIF version |
Description: A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saluni | ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 4085 | . 2 ⊢ (∪ 𝑆 ∖ ∅) = ∪ 𝑆 | |
2 | 0sal 41035 | . . 3 ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) | |
3 | saldifcl 41034 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ∅ ∈ 𝑆) → (∪ 𝑆 ∖ ∅) ∈ 𝑆) | |
4 | 2, 3 | mpdan 705 | . 2 ⊢ (𝑆 ∈ SAlg → (∪ 𝑆 ∖ ∅) ∈ 𝑆) |
5 | 1, 4 | syl5eqelr 2836 | 1 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 ∖ cdif 3704 ∅c0 4050 ∪ cuni 4580 SAlgcsalg 41023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-in 3714 df-ss 3721 df-nul 4051 df-pw 4296 df-uni 4581 df-salg 41024 |
This theorem is referenced by: intsaluni 41042 unisalgen 41053 salgencntex 41056 salunid 41066 |
Copyright terms: Public domain | W3C validator |