![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salpreimaltle | Structured version Visualization version GIF version |
Description: If all the preimages of right-open, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-closed, unbounded below intervals, belong to the sigma-algebra. (i) implies (ii) in Proposition 121B of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salpreimaltle.x | ⊢ Ⅎ𝑥𝜑 |
salpreimaltle.a | ⊢ Ⅎ𝑎𝜑 |
salpreimaltle.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salpreimaltle.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
salpreimaltle.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) |
salpreimaltle.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
salpreimaltle | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimaltle.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | salpreimaltle.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
3 | salpreimaltle.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 1, 2, 3 | preimaleiinlt 41252 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} = ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
5 | salpreimaltle.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | nnct 12820 | . . . 4 ⊢ ℕ ≼ ω | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≼ ω) |
8 | nnn0 39908 | . . . 4 ⊢ ℕ ≠ ∅ | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ℕ ≠ ∅) |
10 | simpl 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝜑) | |
11 | simpl 472 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ) | |
12 | nnrecre 11095 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ) | |
13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ) |
14 | 11, 13 | readdcld 10107 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
15 | 3, 14 | sylan 487 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ) |
16 | salpreimaltle.a | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
17 | nfv 1883 | . . . . . . 7 ⊢ Ⅎ𝑎(𝐶 + (1 / 𝑛)) ∈ ℝ | |
18 | 16, 17 | nfan 1868 | . . . . . 6 ⊢ Ⅎ𝑎(𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) |
19 | nfv 1883 | . . . . . 6 ⊢ Ⅎ𝑎{𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆 | |
20 | 18, 19 | nfim 1865 | . . . . 5 ⊢ Ⅎ𝑎((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
21 | ovex 6718 | . . . . 5 ⊢ (𝐶 + (1 / 𝑛)) ∈ V | |
22 | eleq1 2718 | . . . . . . 7 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (𝑎 ∈ ℝ ↔ (𝐶 + (1 / 𝑛)) ∈ ℝ)) | |
23 | 22 | anbi2d 740 | . . . . . 6 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → ((𝜑 ∧ 𝑎 ∈ ℝ) ↔ (𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ))) |
24 | breq2 4689 | . . . . . . . 8 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (𝐵 < 𝑎 ↔ 𝐵 < (𝐶 + (1 / 𝑛)))) | |
25 | 24 | rabbidv 3220 | . . . . . . 7 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} = {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))}) |
26 | 25 | eleq1d 2715 | . . . . . 6 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → ({𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆 ↔ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆)) |
27 | 23, 26 | imbi12d 333 | . . . . 5 ⊢ (𝑎 = (𝐶 + (1 / 𝑛)) → (((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) ↔ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆))) |
28 | salpreimaltle.p | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎} ∈ 𝑆) | |
29 | 20, 21, 27, 28 | vtoclf 3289 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 + (1 / 𝑛)) ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
30 | 10, 15, 29 | syl2anc 694 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
31 | 5, 7, 9, 30 | saliincl 40863 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ {𝑥 ∈ 𝐴 ∣ 𝐵 < (𝐶 + (1 / 𝑛))} ∈ 𝑆) |
32 | 4, 31 | eqeltrd 2730 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 ≠ wne 2823 {crab 2945 ∅c0 3948 ∩ ciin 4553 class class class wbr 4685 (class class class)co 6690 ωcom 7107 ≼ cdom 7995 ℝcr 9973 1c1 9975 + caddc 9977 ℝ*cxr 10111 < clt 10112 ≤ cle 10113 / cdiv 10722 ℕcn 11058 SAlgcsalg 40846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-card 8803 df-acn 8806 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-fl 12633 df-salg 40847 |
This theorem is referenced by: issmfle 41275 |
Copyright terms: Public domain | W3C validator |