Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salincl Structured version   Visualization version   GIF version

Theorem salincl 41060
 Description: The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
salincl ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem salincl
StepHypRef Expression
1 eqidd 2772 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = (𝐸𝐹))
2 inss1 3981 . . . . . . . 8 (𝐸𝐹) ⊆ 𝐸
32a1i 11 . . . . . . 7 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) ⊆ 𝐸)
4 elssuni 4603 . . . . . . . 8 (𝐸𝑆𝐸 𝑆)
54adantl 467 . . . . . . 7 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → 𝐸 𝑆)
63, 5sstrd 3762 . . . . . 6 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) ⊆ 𝑆)
7 dfss4 4007 . . . . . 6 ((𝐸𝐹) ⊆ 𝑆 ↔ ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = (𝐸𝐹))
86, 7sylib 208 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = (𝐸𝐹))
98eqcomd 2777 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝐸𝐹) = ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))))
1093adant3 1126 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))))
11 difindi 4030 . . . . 5 ( 𝑆 ∖ (𝐸𝐹)) = (( 𝑆𝐸) ∪ ( 𝑆𝐹))
1211difeq2i 3876 . . . 4 ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹)))
1312a1i 11 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆 ∖ ( 𝑆 ∖ (𝐸𝐹))) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))))
141, 10, 133eqtrd 2809 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))))
15 simp1 1130 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → 𝑆 ∈ SAlg)
16 saldifcl 41056 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
17163adant3 1126 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆𝐸) ∈ 𝑆)
18 saldifcl 41056 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
19183adant2 1125 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
20 saluncl 41054 . . . 4 ((𝑆 ∈ SAlg ∧ ( 𝑆𝐸) ∈ 𝑆 ∧ ( 𝑆𝐹) ∈ 𝑆) → (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆)
2115, 17, 19, 20syl3anc 1476 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆)
22 saldifcl 41056 . . 3 ((𝑆 ∈ SAlg ∧ (( 𝑆𝐸) ∪ ( 𝑆𝐹)) ∈ 𝑆) → ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))) ∈ 𝑆)
2315, 21, 22syl2anc 573 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆 ∖ (( 𝑆𝐸) ∪ ( 𝑆𝐹))) ∈ 𝑆)
2414, 23eqeltrd 2850 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ∖ cdif 3720   ∪ cun 3721   ∩ cin 3722   ⊆ wss 3723  ∪ cuni 4574  SAlgcsalg 41045 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-salg 41046 This theorem is referenced by:  saldifcl2  41063  salincld  41087
 Copyright terms: Public domain W3C validator