![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saliincl | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saliincl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
saliincl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
saliincl.kn0 | ⊢ (𝜑 → 𝐾 ≠ ∅) |
saliincl.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
saliincl | ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saliincl.e | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
2 | elssuni 4499 | . . . . . . . 8 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ⊆ ∪ 𝑆) |
4 | df-ss 3621 | . . . . . . 7 ⊢ (𝐸 ⊆ ∪ 𝑆 ↔ (𝐸 ∩ ∪ 𝑆) = 𝐸) | |
5 | 3, 4 | sylib 208 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝐸 ∩ ∪ 𝑆) = 𝐸) |
6 | 5 | eqcomd 2657 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 = (𝐸 ∩ ∪ 𝑆)) |
7 | incom 3838 | . . . . . 6 ⊢ (𝐸 ∩ ∪ 𝑆) = (∪ 𝑆 ∩ 𝐸) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝐸 ∩ ∪ 𝑆) = (∪ 𝑆 ∩ 𝐸)) |
9 | dfin4 3900 | . . . . . 6 ⊢ (∪ 𝑆 ∩ 𝐸) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) | |
10 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (∪ 𝑆 ∩ 𝐸) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
11 | 6, 8, 10 | 3eqtrd 2689 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
12 | 11 | iineq2dv 4575 | . . 3 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
13 | saliincl.kn0 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ ∅) | |
14 | iindif2 4621 | . . . 4 ⊢ (𝐾 ≠ ∅ → ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
16 | 12, 15 | eqtrd 2685 | . 2 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
17 | saliincl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
18 | saliincl.kct | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
19 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝑆 ∈ SAlg) |
20 | saldifcl 40857 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
21 | 19, 1, 20 | syl2anc 694 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
22 | 17, 18, 21 | saliuncl 40860 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
23 | saldifcl 40857 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) → (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸)) ∈ 𝑆) | |
24 | 17, 22, 23 | syl2anc 694 | . 2 ⊢ (𝜑 → (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸)) ∈ 𝑆) |
25 | 16, 24 | eqeltrd 2730 | 1 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∖ cdif 3604 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 ∪ cuni 4468 ∪ ciun 4552 ∩ ciin 4553 class class class wbr 4685 ωcom 7107 ≼ cdom 7995 SAlgcsalg 40846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-card 8803 df-acn 8806 df-salg 40847 |
This theorem is referenced by: iocborel 40892 hoimbllem 41165 iccvonmbllem 41213 salpreimagtge 41255 salpreimaltle 41256 smflimlem1 41300 smfsuplem1 41338 |
Copyright terms: Public domain | W3C validator |